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ABSTRACT 
 
 
Spacecraft attitude estimation and pointing accuracy have always been limited by 

imperfect sensors.  The rate gyroscope is one of the most critical instruments used in 

spacecraft attitude estimation and unfortunately historical trends show this instrument 

degrades significantly with time.  Degraded rate gyroscopes have impacted the missions 

for several NASA and ESA spacecraft, including the Hubble Telescope.  A possible 

solution to this problem is using a mathematically modeled dynamic gyroscope in lieu of 

a real one.  In this thesis, data from such a gyro is presented and integrated into a 

spacecraft attitude estimation algorithm. 

The impediment to spacecraft attitude estimation presented by imperfect sensors 

has been overcome by developing more accurate sensors and using Kalman filters to 

reduce the effect of noisy measurements.  Kalman filters for spacecraft attitude 

estimation have historically been based on an Euler angle or quaternion formulation.  

Though Euler angles and quaternions are arguably the most common methods with which 

to describe the attitude of a spacecraft, other methods of describing attitudes do exist – 

including the Gibbs and Rodriguez parameters.  A Kalman filter based upon the Gibbs 

parameter is presented and analyzed in this thesis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



vi

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 



vii

TABLE OF CONTENTS 
 

I. INTRODUCTION........................................................................................................1 
A. SPACECRAFT ATTITUDE ESTIMATION................................................1 
B. SATELLITE ENVIRONMENT.....................................................................1 

1. Gravity Gradient Torque ....................................................................2 
2. Magnetic Torque..................................................................................3 
3. Solar Torque.........................................................................................3 
4. Atmospheric Drag................................................................................4 

C. SENSORS .........................................................................................................4 
1. Rate Gyroscopes...................................................................................4 
2. Dynamic Gyroscopes ...........................................................................5 
3. Star Trackers........................................................................................5 

D. KALMAN FILTERS .......................................................................................5 
E. STAR GAPS AND RATE GYROSCOPE UPSETS.....................................6 
F. THESIS ORGANIZATION............................................................................6 

II. SPACECRAFT ATTITUDE.......................................................................................7 
A. ATTITUDE PARAMATRIZATON...............................................................7 

1. Direction Cosine Matrix ......................................................................7 
2. Euler Angles .........................................................................................8 
3. Quaternions ..........................................................................................8 

a. Quaternion Definition...............................................................8 
b. Attitude Quaternions.................................................................9 
c. The Quaternion Conjugate.....................................................10 
d. Quaternion Multiplication......................................................10 
e. Quaternion Propagation.........................................................11 
f. Advantages of Quaternions ....................................................11 

4. Gibbs Vector.......................................................................................12 
B. ATTITUDE SENSORS .................................................................................12 

1. Rate Gyroscopes.................................................................................13 
a. Bias ..........................................................................................13 
b. Rate Walk ................................................................................13 
c. Scale Factor.............................................................................13 
d. Orthogonality Errors...............................................................14 

2. Star Trackers......................................................................................14 
a. Star Characteristics.................................................................14 
b. Star Sensing.............................................................................14 
c. Star Tracking...........................................................................15 
d. Star Gaps .................................................................................15 
e. Star Tracker Error ..................................................................15 

III. KALMAN FILTERING FOR ATTITUDE ESTIMATION..................................17 
A. THE KALMAN FILTER..............................................................................17 

1. The Kalman Filter..............................................................................18 
a. Prediction ................................................................................19 
b. Measurement...........................................................................19 



viii

c. Correction................................................................................20 
d. Filter Initialization..................................................................20 

2. The Extended Kalman Filter ............................................................20 
a. Prediction ................................................................................21 
b. Measurement...........................................................................22 
c. Correction and Initialization ..................................................22 

B. ATTITUDE ERROR REPRESENTATIONS.............................................22 
1. Quaternion Error...............................................................................22 
2. Gibbs Error ........................................................................................23 

C. FORMULATION OF A GIBBS PARAMETER BASED KALMAN 
FILTER...........................................................................................................24 
1. Filter Overview...................................................................................24 
2. System Dynamics – Developing the State Transition Matrix ........25 
3. System Sensors - Developing the Measurement Sensitivity 

Matrix..................................................................................................27 
4. The Filter Equations ..........................................................................28 
5. Testing the Filter ................................................................................30 

IV. STAR GAP ERROR MITIGATION .......................................................................33 
A. EFFECTS OF STAR GAPS..........................................................................33 

1. Euler Angle Based Kalman Filter ....................................................33 
2. Gibbs Parameter Based Kalman Filter............................................34 

B. ADAPTIVE COVARIANCE ........................................................................36 
C. THE PLANT COVARIANCE MATRIX ....................................................36 

1. Adapting Plant Noise for the Euler Angle Based Kalman Filter...36 
2. Adapting Plant Noise for the Gibbs Parameter Based Kalman 

Filter ....................................................................................................38 
D. THE MEASUREMENT COVARIANCE MATRIX..................................38 

1. Perturbation of Measurement Noise Covariance Matrix for an 
Euler Angle Based Kalman Filter ....................................................38 

2. Perturbation of Measurement Noise Covariance Matrix for a 
Gibbs Parameter Based Kalman Filter............................................39 

E. SIMULTANEOUS ADAPTATION OF COVARIANCE MATRICES....39 

V. DYNAMIC GYROSCOPE AND RATE GYRO UPSETS ....................................41 
A. THE RATE GYROSCOPE UPSET.............................................................41 
B. THE DYNAMIC GYROSCOPE..................................................................44 
C. INTEGRATING THE DYNAMIC GYROSCOPE WITH AN 

ATTITUDE ESTIMATOR ...........................................................................47 

VI. CONCLUSIONS ........................................................................................................51 
A. SUMMARY ....................................................................................................51 
B. RECOMMENDATIONS...............................................................................51 

1.   Kalman Filtering................................................................................51 
2.  Unscented Filtering............................................................................51 

LIST OF REFERENCES......................................................................................................53 

INITIAL DISTRIBUTION LIST .........................................................................................55 



ix

 



x

 
LIST OF FIGURES 

 
Figure 1. Coordinate Systems S and S’.............................................................................9 
Figure 2. Gibbs vector as a Gnomonic Projection...........................................................12 
Figure 3. Kalman Filtering Process Diagram..................................................................17 
Figure 4. Gibbs Parameter Kalman Filter Flow Diagram ...............................................30 
Figure 5. Quaternion Errors For Gibbs Parameter Kalman Filter With Zero Bias and 

No Measurement Noise....................................................................................31 
Figure 6. Bias Estimated By Gibbs Parameter Kalman Filter with Zero Bias and No 

Measurement Noise .........................................................................................31 
Figure 7. Euler Angle Based Kalman Filter with 200 Second Star Gap.........................34 
Figure 8. Estimated Quaternion Elements vs. Actual for Gibbs Parameter Based 

Kalman Filter (Estimate Shown in Blue) with 200 Second Star Gap..............35 
Figure 9. Quaternion Error for Gibbs Parameter Based Kalman Filter with 200 

Second Star Gap...............................................................................................35 
Figure 10. Measurement Covariance Trigger....................................................................37 
Figure 11. Mean Quaternion Error for Plant Noise Injection During Star Gaps...............38 
Figure 12. Mean Quaternion Error for Measurement Matrix Adaptation During Star 

Gap...................................................................................................................39 
Figure 13. Average Quaternion Error with Simultaneous Plant and Measurement 

Covariance Matrix Adaptation.........................................................................40 
Figure 14. Quaternion Error with 2 second Rate Gyroscope Upset – Euler Angle 

Based Kalman Filter ........................................................................................42 
Figure 15. Quaternion Error with 2 second Rate Gyroscope Upset – Gibbs Parameter 

Based Kalman Filter ........................................................................................42 
Figure 16. Gibbs Parameter Based Kalman Filter with 95 second Rate Gyroscope 

Upset ................................................................................................................43 
Figure 17. Gibbs Parameter Based Kalman Filter with a 150 Second Rate Gyroscope 

Upset ................................................................................................................44 
Figure 18. Comparison of Real and Dynamic Gyroscope Performance ...........................46 
Figure 19. Difference Between Real and Dynamic Gyroscope Readings ........................46 
Figure 20. Comparison of Estimator Performance with and without Dynamic 

Gyroscope input during a 95 second Rate Gyroscope Upset...........................48 
Figure 21. Quaternion Error with Dynamic Gyroscope Takeover Occurring Two 

Seconds after Rate Gyroscope Upset Commencement....................................49 
 
 
 
 
 
 
 
 



xi

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



xii

ACKNOWLEDGMENTS 
 
 

The author would like to thank several people for their contributions and support 

of this endeavor.  Dr. Roberto Cristi first introduced me to the concept of mathematical 

filtering during my second quarter at the Naval Postgraduate School and provided me 

with vast insight and inspiration throughout the course of my study.  Professor Barry 

Leonard provided me the knowledge base with which to apply Kalman Filtering to 

spacecraft attitude estimation.  A special thank you is in order for Mr. Don Kolve of the 

Boeing Corporation, who taught me an unimaginable amount of information about 

spacecraft attitude estimation theory and practical engineering application.  Dr. Brij 

Agrawal introduced me to the concept of a pseudo-gyroscope and guided my study of 

engineering in more aspects than I can recall.  All of the above and many others have my 

undying thanks and gratitude. 

 

 
 
 
 
 
 
 
 



xiii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK



1

I. INTRODUCTION  

A. SPACECRAFT ATTITUDE ESTIMATION  
The pointing accuracy requirements of modern Department of Defense satellites 

have increased steadily over the past few decades.  As the pointing accuracy requirements 

for a satellite increase, so does the level of accuracy in the estimation of its attitude.  

Spacecraft attitude estimation is an extremely complex and non-linear process.  Inputs 

from several different sensors – such as star trackers and rate gyroscopes, among others – 

are required to determine the attitude of a spacecraft.  Because no sensor is error-free – 

even at the time of manufacture – and all man-made equipment degrades with age, the 

problem of accurate attitude estimation throughout the mission life of a satellite is 

extremely important.  A method for overcoming these impediments via a Kalman 

filtering process is presented and analyzed here.  

Kalman filtering has been used in spacecraft attitude estimation for quite some 

time.  The earliest published application was in 1970 by Farrell and several others have 

followed since.  Lefferts, Shuster, and Markley published a thorough review of the topic 

in 1982 and since then Markley, Crassidis, and several others have kept Kalman filtering 

an active topic of research in the space industry [Markley].  Several different attitude 

representations have been used in Kalman filtering with varying degrees of success.  

Palermo successfully implemented a Kalman filter using an Euler angle representation of 

the attitude for a simulated bifocal relay mirror spacecraft [Palermo] and his dynamic 

model is used as a starting point for this work. 

B. SATELLITE ENVIRONMENT 
The environment in which a satellite operates complicates the problem of 

spacecraft attitude estimation and control.  A satellite in orbit is subject to non-constant 

external torques at all times – some secular (varying linearly with time), some periodic, 

and some random.  The forces that induce these torques are gravity gradient, magnetic, 

solar pressure, and atmospheric drag, though the effects of atmospheric drag on satellites 

outside of LEO is considered negligible.  Though these torques can be predicted with 

high accuracy (with the exception of atmospheric drag), any errors in prediction couple 

with errors in sensor accuracy to increase the error in attitude estimation.  Because large 
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errors in attitude can be attributed to the effects of these external torques, a brief 

overview of gravity gradient, magnetic, and solar torque and the errors that can result 

from each is presented here.  For more in depth information the reader is referred to texts 

by Sidi, Bong Wie, or Hughes [Sidi, Bong Wie, Hughes].  In the rest of this section we 

survey a number of disturbances acting on the spacecraft. 

1. Gravity Gradient Torque 
A spacecraft is not a point mass and may not be treated as such.  It is a rigid body 

(in most cases) with a mass distribution about a center of mass.  Vice treating it as a point 

mass an inertia dyadic is used.  Gravity gradient torques are imparted to a spacecraft 

because gravity acts on each element of the spacecraft.  Gravity acting on a mass m 

located at a distance r from the spacecraft center of mass will induce a torque about the 

center of mass.  The effects of gravity will act on each portion of the satellite in 

accordance with Newton’s Laws of Gravitation.  Ignoring the effects of the moon and 

other third bodies due to their small effects, these torques may be written as: 

 

0 03
0

3 ˆ ˆ( )
B BGG BN R I R

R
µ

= × ⋅
r

 (1-1) 

where µ  is the gravitational parameter for the Earth, 0
ˆ

B
R is the distance from the satellite 

to the center of the Earth, and BI  is the inertia dyadic for the satellite. 

Some satellites with low pointing requirements actually use gravity gradient 

stabilization.  A quick examination of equation 1-1 reveals that knowledge of the position 

of the satellite and the inertia dyadic are critical for predicting the gravitational torque.  

System identification algorithms are being actively researched and developed to facilitate 

more precise knowledge of spacecraft inertia dyadics.   

In addition to its own mass distribution, the fact that the gravitational field 

produced by the Earth is an aspherical potential further complicates the problem.  Like a 

satellite, the Earth does not have a uniform mass distribution – hence its aspherical 

gravity field.  Zonal, tesseral, and sectoral harmonics within the field are both non-linear 

and extremely complex to model mathematically.  Inaccuracies in modeling the 

gravitational field of the Earth can lead to attitude pointing errors as well.   
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2. Magnetic Torque 

The Earth has a rotating magnetic field B
r

 through which any orbiting satellite 

must travel.  The satellite itself has an intrinsic magnetic moment
x

y

z

m
m m

m

 
 =  
  

r .  Interaction 

between the magnetic moment of the spacecraft and the magnetic field of the Earth 

generates a torque on the spacecraft calculated by 

BN m B= ×
r rr   (1-2) 

The magnitude of B
r

will decrease as the satellite altitude increases.  For dealing 

with torques induced by the interaction of the spacecraft and Earth magnetic fields, 

precise knowledge of the spacecraft magnetic moment mr is critical.  As with the moment 

of inertia, system identification algorithms can be used to mitigate errors due to 

inaccurate estimates of mr . 

3. Solar Torque 

Maxwell’s equations imply that electromagnetic waves have momentum, which 

may be transferred to objects with which it comes in contact.  Since light is an 

electromagnetic wave, it exerts pressure.  Though this pressure is miniscule in an Earth 

environment it is not miniscule for a satellite in orbit about the Earth.   

For electromagnetic radiation, basic physics shows us that Electromagnetic Force 

= Work + Energy Density which, when expressed in a more mathematical manner 

becomes 

2( )
S V V

ST da da FdV dV
t c
∂

= +
∂∫ ∫ ∫

r
r r   (1-3) 

where T is the Maxwell stress tensor, F is the force density, and S
r

 is the Poynting 

vector (
4
cS E B
π

= ×
r r r

).   

The amount of pressure exerted on an object by an electromagnetic wave is highly 

dependent upon the type of surface being illuminated.  In some complex models, the type 

of reflection – specular or diffuse – as well as the reflectivity of the surface plays a part in 
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the calculation.  In a simple model the following equation is often used to determine the 

maximum solar torque imparted to a spacecraft 

(1 )cos( )( )S
SP S sp g

FN A q i c c
c

= + −
r

  (1-4) 

where SA  is the spacecraft area, q is the reflectance factor, i is the angle of 

incidence of the incoming light, sp gc c− is the distance between the spacecraft center of 

gravity and the center of solar pressure, and SF  is the solar power density (which varies 

with time).  Solar cycles, changes in sp gc c− due to fuel expenditures, and the changing 

area of a spacecraft tracking a point on the Earth all contribute to the difficulty of 

estimating and compensating for disturbances due to solar pressure [SMAD].   

4. Atmospheric Drag 

As previously mentioned the effects of atmospheric drag on satellites outside of 

LEO are considered negligible.  For LEO satellites, however, atmospheric drag is the 

most difficult external torque to predict.  Because the dynamics of the outer reaches of 

the atmosphere are not fully understood it cannot be modeled accurately.  The effects of 

drag on LEO spacecraft are directly proportional to the area of the spacecraft.  

Atmospheric drag, though pertinent to LEO applications, was not included in any of the 

models used in developing this thesis but is mentioned here for completeness. 

C. SENSORS 
Accurate measurement of data from external sources is required for a spacecraft 

attitude control system to estimate its attitude.  Though several sensors exist that perform 

this function – including sun sensors, horizon sensors, and earth sensors among others – 

the star tracker is the most accurate and pertinent to the focus of this work.  

 1. Rate Gyroscopes 
A cursory perusal of either the Euler Equations of Motion or the kinematic 

equations for the quaternion or Gibbs parameters reveals their dependence upon angular 

rate data.  Any error in angular rate measurement or calculation will result in an error in 

spacecraft attitude estimation.  Angular rate information is critical to the accurate 

estimation of spacecraft attitude – regardless of the estimation method.  Rate gyroscopes 

provide this information to the spacecraft attitude control system.   
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There are several different kinds of rate gyroscopes available for use in the space 

environment today.  Mechanical rate gyroscopes and rate integrating gyroscopes have 

been in use on orbit for quite several years.  Both of these types of gyroscopes are 

dependent upon mechanical moving parts which degrade over time.  Laser gyroscopes, 

quartz rate sensors, and hemispherical resonator gyroscopes are now available today with 

much higher accuracies and no reliance on moving parts [Sidi].   

2. Dynamic Gyroscopes 
Rate gyroscopes are man-made devices and therefore have finite lifetimes – 

especially in the harsh environs of space.  Because all of the external secular and periodic 

torques on a spacecraft may be modeled with some modicum of accuracy and the torques 

applied to the spacecraft via the momentum exchange devices of its attitude control 

system are known with a fair amount of precision, it is possible to determine the angular 

rate of the spacecraft via mathematical modeling and the use of external measurements.  

Such an algorithm is called a dynamic gyroscope.  The use of a dynamic gyroscope upon 

failure of a simulated mechanical gyroscope is shown and analyzed in this work. 

3. Star Trackers 
Navigators from ancient times used the stars as navigational aids.  Satellites 

navigating in space do the same via a device called a star tracker.  Because stars may be 

considered inertially fixed bodies for all intents and purposes and because they are 

extremely small as seen from our solar system, they are ideal objects to use as an attitude 

reference.  Star trackers provide the most accurate attitude data to the spacecraft attitude 

control system by several orders of magnitude over any other type of sensor.  While older 

star trackers were capable of tracking only one star at a time, the new generation of star 

trackers can feed attitude quaternions to its host satellite and track multiple stars 

simultaneously.  A new type of star sensor is currently being developed by Dr. Junkins et 

al which will use two simultaneous images of star fields from different parts of the sky to 

determine spacecraft attitude [Junkins].   

D. KALMAN FILTERS 
As previously mentioned, a satellite attitude control system receives input from 

imperfect external sensors to estimate the actual attitude of the satellite.  The Kalman 

filter is an estimation algorithm frequently employed to do this.  In essence, the Kalman 
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filter is a set of mathematical equations that provides a recursive solution of the least-

squares estimation method.  It supports computational estimations of past, present, and 

future states and can do so even when the nature of the system under consideration is not 

precisely known.   

Given the extremely non-linear and varying nature of the space environment, this 

makes it an ideal tool with which to perform spacecraft attitude estimation.  The 

effectiveness of the filtering algorithm is highly dependent upon how the state vector is 

defined, the type of filter employed, and several other factors.  In this research we 

developed a Kalman Filter based on specific parameterization of the spacecraft attitude 

and attitude error. 

E. STAR GAPS AND RATE GYROSCOPE UPSETS 
Satellites in orbit currently experience periods in which their star trackers are 

unable to sense stars – called star gaps.  Rate gyroscopes in some older satellites are 

sometimes sending data over 1000 times the actual reading – such an event is called a 

rate gyroscope upset.  Both of these events wreak havoc upon attitude control algorithms 

- the Kalman filter in particular.  Both of these phenomena are simulated and their effects 

mitigated via adaptive covariance and dynamic gyroscope integration. 

F. THESIS ORGANIZATION 
In this thesis we introduce the dynamics of spacecraft attitude in Chapter Two.  

Chapter Three begins with a cursory overview of the Kalman filtering process followed 

by a brief section on attitude error representation.  It closes with a derivation of the Gibbs 

parameter based Kalman filter.  Chapter Four covers the problems caused by star gaps 

and methods of managing such problems.  Chapter Five introduces the dynamic 

gyroscope and methods of dealing with rate gyroscope upsets. 
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II. SPACECRAFT ATTITUDE 

A. ATTITUDE PARAMATRIZATON  
In this section we review spacecraft attitude estimation methods.  There are 

several methods for doing this, but only a short description of most of them will be 

included here.  Emphasis will be placed on the quaternion because understanding the 

quaternion is critical to comprehending the development of the Kalman filters used in 

spacecraft attitude estimation. 

Regardless of the method, describing the attitude of a spacecraft basically entails 

describing the orientation of one coordinate system with respect to another.  For purposes 

of satellites, a coordinate system based on the principal axes of the spacecraft – called the 

body coordinate system – and Earth Centered Inertial (ECI) systems are used.   

1. Direction Cosine Matrix 
The direction cosine matrix is the simplest manner in which to describe the 

attitude of a spacecraft.  Given two coordinate systems each consisting of three 

orthogonal unit vectors there exists a three by three matrix C that relates the two 

coordinate systems. 

When dealing with different coordinate systems it becomes necessary to develop 

a notation for annotating in which coordinate system a vector is expressed.  In this paper 

a superscript to the left of the vector will indicate the coordinate system in which a vector 

is expressed.  For example, ivr is a vector in the inertial reference frame while bvr is a 

vector in the body reference frame.   

A vector b

x
x y

z

 
 =  
  

r  expressed in body coordinates may be expressed in inertial 

coordinates by multiplying it by a direction cosine matrix (DCM) as shown below 

i b b iC x x=
r r   (2-1) 

Note the two superscripts on the DCM.    For a direction cosine matrix, the 

superscript on the left indicates the coordinate system the DCM transforms a vector to 
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while the right superscript indicates the coordinate system from which the vector is being 

transformed.  Conversely, a vector in the inertial frame may be expressed in body frame 

coordinates by 

b i i bC x x=
r r   (2-2) 

As one might expect i bC  and b iC are related as the transpose of each other. 

2. Euler Angles 
Euler angles are a series of rotations about the axes of one coordinate system to 

align it to another coordinate system.  These rotations are sometimes referred to as roll ϕ  

(rotation about the x axis), pitch θ  (rotation about the y axis), and yaw ψ  (rotation about 

the z axis). 

Since in the Euler angle formulation the order matters, there are twelve possible 

combinations of Euler angles one may use to go from one coordinate system to another.  

Multiplication of the individual rotation matrices for each Euler angle will result in a 

direction cosine matrix.  Given the two coordinate systems a and b the direction cosine 

matrix for a roll-pitch-yaw Euler sequence would be 

1 0 0 cos 0 sin cos sin 0
0 cos sin 0 1 0 sin cos 0
0 sin cos sin 0 cos 0 0 1

a bC
θ θ ψ ψ

ϕ ϕ ψ ψ
ϕ ϕ θ θ

−     
     = −     
     −     

  (2-3) 

3. Quaternions 
A mathematical structure called the quaternion is a convenient method with which 

to describe the orientation of a coordinate system.   

a. Quaternion Definition 

 Quaternions are a form of hyper-complex numbers invented by William 

Hamilton in the nineteenth century and are today used extensively both in robotics and 

spacecraft attitude control.  Quaternions are represented as a four element set consisting 

of three vector components and one scalar component 
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1

2

3

4

q
q

q
q
q

 
 
 =
 
 
  

  (2-4) 

  There is no set convention for which element of the quaternion is a scalar, 

but in this paper 4q  will always be the scalar element of the quaternion. 

b. Attitude Quaternions 
When used for describing an attitude, quaternions are constrained to the 

surface of a four dimensional hyper-sphere defined by 

2 2 2 2
1 2 3 4 1q q q q+ + + =   (2-5) 

 To determine the physical meaning of quaternions constrained on this 

hyper-sphere, consider two coordinate systems as shown below, S and S’.  The vector 

portion of the quaternion represents an axis about which coordinate system S must be 

rotated to align it with the S’coordinate system – called the eigenaxis.   

 

 

 

 

 

 

 

 

Figure 1.   Coordinate Systems S and S’ 
 

S

S’

S

S’
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The scalar portion of the quaternion is a measure of the magnitude of the 

rotation rθ .  Defining the eigenaxis as a unit vector
x

y

z

e
e e

e

 
 =  
  

r , the quaternion elements may 

be defined as follows: 

1

2

3

4

sin
2

sin
2

sin
2

cos
2

r
x

r
y

r
z

r

q e

q e

q e

q

θ

θ

θ

θ

 =  
 
 =  
 
 =  
 
 =  
 

  (2-6) 

 Since quaternions are vectors of unit magnitude, they may not be added 

together through the standard definition of addition.  Quaternion algebra is a rich and 

interesting topic, but one that will not be dealt with here in its entirety.  Two uses of 

quaternion algebra will be addressed because of their usefulness in attitude estimation – 

the quaternion conjugate and quaternion multiplication. 

c. The Quaternion Conjugate 
The quaternion conjugate of quaternion q is given by 

*
1 2 3 4q q q q q= − − − +   (2-7) 

 From a physical standpoint, the conjugate of a quaternion q represents a 

rotation of the same magnitude about a vector in the opposite direction.  It is also worthy 

to note that the inverse of a quaternion is identical to its complex conjugate.  The 

quaternion conjugate is useful when using the quaternion as a rotation operator, which 

will be discussed later. 

d. Quaternion Multiplication 

As noted previously, quaternions have their own unique algebra.  The 

symbol ⊗ is used to denote quaternion multiplication.  It can be shown that the 

quaternion product is defined by 
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4 3 2 1 1

3 4 1 2 2

2 1 4 3 3

1 2 3 4 4

q q q q p
q q q q p

p q
q q q q p
q q q q p

−   
   −   ⊗ =
   −
   − − −      

  (2-8) 

which may also be written as 

4 4

4 4

p q q p p q
p q

p q p q
+ − × 

⊗ =  − 

r r

r r   (2-9) 

The quaternion product is a useful tool for time propagation of the 

quaternion – as will be shown later.  Recall that a quaternion represents a rotation from a 

reference frame to a given attitude.  It naturally follows that the quaternion product 

defined in equation 2-9 would also represent a rotation – which it does.  Defining ( )A q as 

a DCM representing the same rotation as quaternion q, it may be shown that  

( ) ( ) ( )A p q A p A q⊗ =   (2-10) 

e. Quaternion Propagation 

Given an angular velocity vector ωr  in body coordinates and an initial 

orientation expressed by the quaternion 0q  the orientation at any time t may be expressed 

as the solution of the following differential equation 

1
02

dq q q
dt

ω 
= = ⊗ 

 

r

&   (2-11) 

with the initial condition 0(0)q q= .  

f. Advantages of Quaternions 
Quaternion representations of spacecraft attitude hold several advantages 

over the Euler angle and direction cosine matrix representations.  Perhaps the most 

obvious advantage comes from the size - a quaternion is a four element structure, 

whereas a direction cosine matrix has nine elements.  A quaternion describes the same 

attitude with half of the number of elements, saving both memory and processing power.  

The simplicity of the time derivative of the quaternion makes it an ideal method with 

which to do attitude propagation.  Also of great importance is the fact that it has no 

singularities.   
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4. Gibbs Vector 

Gibbs vectors are closely related to quaternions, though they exist in 3  vice 4 .  

The Gibbs vector is defined as 

1

2
4

3

1 tan
2 2

gr

q
a

g q e
q

q

θ
 

  = = ≡      

r r   (2-12) 

The Gibbs vector is obviously singular whenever 4q  goes to zero, which occurs 

for rotations of 180 degrees.  Consequently, the Gibbs parameter is an extremely 

effective tool for describing rotations in the interval ( 180 , 180 )− +o o .  The relationship 

between the Gibbs vector and the quaternion is shown in the gnomonic projection in 

figure 2:  

 

 

 

 

 

 

 

 

 

 

 
Figure 2.   Gibbs vector as a Gnomonic Projection 

 
B. ATTITUDE SENSORS 

Measurement of external data is required in order to produce an attitude estimate.  

There are a multitude of sensors available to measure attitude data for a spacecraft, 

including horizon sensors, sun sensors (coarse and fine), and star trackers.  None of these 

provides a perfect measurement, hence the need for attitude error estimation.  A brief 

overview of rate gyroscopes and star trackers along with their respective sources of error 

is presented here, as both are simulated in models used in this thesis. 
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1. Rate Gyroscopes 

Rate gyroscopes provide angular rate data to the spacecraft attitude control 

system.  There are several different types of rate gyroscopes available today, including 

mechanical, fiber optic, laser, and hemispherical resonator gyroscopes.  Regardless of the 

type of gyroscope, all perform the same function.  Each sends the spacecraft attitude 

control system the angular rates of the satellite in body coordinates.  It is beyond the 

scope of this work to describe each in detail, but one thing that all rate gyroscopes have in 

common is that they are inherently noisy.  The errors sent to the attitude control system 

by noisy rate gyroscopes may be categorized into four distinct types of error:  bias error, 

random walk, scale factor error, and orthagonality errors.  

a. Bias 

Bias error is sometimes referred to as a constant drift.  Bias errors for 

current generation gyroscopes range from 0.001 / houro to1 / houro .  The measured 

angular rate for a rate gyroscope may be expressed as 

( ) ( ) ( )meas t t b tω ω= +   (2-13) 

With b(t) representing the bias at time t.  As will be shown later in this 

work, it is possible to estimate gyroscope bias via a Kalman filtering process.   

b. Rate Walk 
Rate walk is sometimes described as bias drift.  Random walk propagates 

from the white noise of the sensor and is responsible for non-deterministic behavior.  Its 

units are normally / houro .   

c. Scale Factor 
The scale factor error is the linear deviation of the measured rate from the 

true rate – normally given as a percentage or in parts per million.  Asymmetry and non-

linearity have been observed in scale factors for rate gyroscopes.  Scale factors are caused 

by imperfections in manufacturing and the degradation of the gyroscope with the passage 

of time [Hewitson et al].  Though a source of error in any gyroscope, scale factors are not 

used in any of the models in this work, but are presented here for completeness. 
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d. Orthogonality Errors 

Rate gyroscopes are mounted in clusters relative to one another to provide 

data to a spacecraft attitude control system.  Any misalignment of the sensors with 

respect to one another will result in error – known as orthogonality error.  Launch 

vibrations and thermal deformation over time could cause such errors to occur.  As with 

scale factor errors, no orthogonality errors are modeled in this work – they are presented 

for theoretical completeness. 

2. Star Trackers 

As their name implies, star trackers generate attitude data based upon the relative 

position of stars as seen from the spacecraft itself.  Each star sensor has a star catalog 

with which to compare the image it sees.  Due to the large number of recorded stars, the 

exact composition of the catalog will be determined by the orbit in which the host 

satellite will be placed – there is no such thing as a standard star catalog. 

a. Star Characteristics 

In order to use stars for navigational purposes it is necessary to 

differentiate between stars.  There are two characteristics of stars which make this 

possible – magnitude and spectra.   

Magnitude refers to the brightness of a star.  There are two types of 

magnitude – absolute and apparent.  The apparent magnitude is how bright an object 

seems when viewed from the Earth.  In contrast, the absolute magnitude is the apparent 

magnitude of an object placed at ten parsecs away.  Star trackers use the apparent 

magnitude for their calculations. 

The spectrum of a star refers to the type of radiation it is emitting.  Stellar 

spectra are divided into seven categories.  There are O, B, A, F, G, K, and M class stars, 

with O being the hottest and M being the coolest star.  

b. Star Sensing 

Current generation star trackers use Charge Coupled Devices (CCDs) to 

detect stars, though future generation star trackers will use CMOS technology [Junkins].  

A stray light shield prevents light from outside the star tracker bore sight from reaching 

the CCD.  Once the CCD has registered a star field image, the star sensor processor will 

match that image with its library and send an attitude quaternion to the spacecraft attitude 
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control system.  This is an extremely simplified explanation of what actually occurs, but 

the actual mechanics of this process are outside the scope of this work. 

c. Star Tracking 

Once one or more stars have been acquired, the spacecraft will move 

around the Earth in its orbit and possibly change its attitude intentionally.  The software 

must track the image of the star through this motion and be ready to acquire a new star 

when the image exits the Field of View (FOV) of the star tracker [Sidi]. 

d. Star Gaps 

There are times when a star exits the field of view (FOV) of a star tracker 

and no new star within the new FOV has been acquired.  During such time periods no 

data is being sent to the satellite attitude control system – such periods are called star 

gaps.  Star gaps may also be caused by the satellite pointing in such a way that the moon 

or sun prevents the star tracker from sensing any stars due to their high intensity.  Star 

gaps are detrimental to attitude determination when they extend for more than a few 

seconds and can wreak havoc on attitude estimation algorithms, as will be shown in a 

later section. 

e. Star Tracker Error 
Although easily the most accurate sensor available, star trackers are not 

error free.  Like rate gyroscopes, star trackers also have a scale factor, which will vary 

with age.  The CCD assemblies are temperature sensitive structures – a primary source of 

error.  Misalignments of star trackers with respect to the spacecraft body as a result of 

launch vibration or thermal deformation over time are also a source of star tracker error. 
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III. KALMAN FILTERING FOR ATTITUDE ESTIMATION 

As shown in the preceding section, satellite attitude control systems estimate the 

attitude of the satellite based upon measurements from imperfect sensors.  As time passes 

the sensors degrade and the data they send to the attitude control system degrades as well.  

The Kalman filter provides a solution to this problem.  In this section the Kalman filter is 

introduced in its basic form.  Attitude error representations are introduced and then a state 

vector is defined for attitude estimation purposes.  A discrete Kalman filter for attitude 

estimation based upon the Gibbs parameter is then developed and the results of its 

implementation are presented.   

A. THE KALMAN FILTER 
As alluded to previously, a Kalman filter is a recursive mathematical algorithm 

that allows one to estimate the state of the system based upon its previous states, its 

known dynamics, and knowledge of the accuracies of the sensors involved.  Once 

initialized, there are three steps to the filtering process:  prediction, measurement, and 

correction.  A diagram of these steps is shown below.  There are two main types of 

Kalman filters – regular and extended.  A brief overview of each is presented here.   

Initialization

Prediction

Measurement

Correction

Initialization

Prediction

Measurement

Correction

 
Figure 3.   Kalman Filtering Process Diagram 
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1. The Kalman Filter 

The Kalman filter may be used to predict the future state of a process governed by 

the following equation 

1k k k k kx F x Gu w+ = + +   (3-1) 

where k represents the time step and x is a vector of state variables nx∈ℜ .  kF  is 

an n n× matrix known as the state transition matrix which relates the current state to the 

next one.  The matrix G is a n l× matrix that relates the control input at time step k - ku  - 

to the state x.  The final term kw  is the process or plant noise.   This noise accounts for 

random inputs and inaccuracies of the state space model that cause the plant to perform in 

a non-deterministic manner.  The noise is assumed to be white noise with a normal 

probability distribution  

( ) (0, )p w N Q   (3-2) 

where kQ is a matrix representing the plant noise w  defined by 

cov( )k kQ w≡   (3-3) 

Although the state vector represents all the variables being estimated, not all the 

estimated variables are required to be measured.  The measurement is related to the state 

by the following equation 

k k k kz H x v= +   (3-4) 

where kH is an m n× matrix often referred to as the measurement matrix or the 

measurement sensitivity matrix in some cases.  The second term kv represents the 

measurement noise – or sensor inaccuracies.  As with the plant noise, it is assumed to be 

white noise with a normal distribution given by 

( ) (0, )k kp v N R   (3-5) 
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where kR is the measurement error covariance matrix defined by 

cov( )k kR v≡   (3-6) 

It is important to note that though they share a similar probability distribution, the 

plant and measurement noise are completely independent of one another.  If a system 

under consideration can be described by equations 3-1 and 3-3, then a discrete Kalman 

filtering algorithm may be used to estimate its future states. 

a. Prediction 
The first phase of a filtering algorithm is the prediction phase.  In this 

phase at time step k a prediction 1ˆkx +  is made for the next time step based upon the 

current state using the system model.  This prediction is given by 

1ˆ ˆk k k kx F x Gu−
+ = +   (3-7) 

the minus in the superscript of x̂ denotes that the estimate has been made 

prior to taking a measurement. 

The error covariance is also predicted during the prediction stage.  The 

covariance matrix P is a n n× matrix representing the estimate error covariance.  The 

covariance matrix is predicted via  

1
T

k k k k kP F P F Q−
+ = +   (3-8) 

b. Measurement 
Once a prediction for the next state has been made, an actual measurement 

kz  is taken.  Note once again that it is not necessary to measure every state being 

estimated.  A quantity known as the residual kz%  is then calculated by 

ˆk k k kz z H x−= −%   (3-9) 

A quantity called the Kalman gain is then defined according to 

1( )T T
k k k k k k kK P H H P H R− − −= +   (3-10) 

 

 



20

where 

1

ˆ ˆ[( )( ) ]
                    and

ˆ          [ | ]
ˆ          [ | ]

T
k k k k k

k k k

k k k

P E x x x x

x E x z

x E x z

−
−

+

= − −

=

=

  (3-11) 

c. Correction 
The Kalman gain in conjunction with the measurement residual are then 

used to find the estimate ˆkx  via 

ˆ ˆk k K kx x K z−= + %   (3-12) 

The Kalman gain is also used to update the covariance matrix by 

( ) ( ))T T
k k k k k k k k kP I K H P I K H K R K+ −= − − +   (3-13) 

Once this has been completed, the process starts over again – hence the 

term recursive. 

d. Filter Initialization 
In order to begin the Kalman filtering process an initial estimate of both 

the state and the covariance matrix are required to begin the recursion.  The filter can be 

initialized in several different ways, but the most common way to do so is via a simple 

guess.  The closer to the actual state the initial guess is, the faster the estimate generated 

by the filter will reach the actual value.  On occasion the filter is initialized using the first 

few measurements, but since it is easier to simply make an educated guess this method is 

not often used. 

2. The Extended Kalman Filter 
Not all processes that are desired to be estimated can be modeled in the linear 

form required for the Kalman filter.  For these processes, the Extended Kalman Filter 

(EKF) can be used.  The EKF is simply a regular Kalman filter that linearizes about the 

estimate and covariance.   

For the EKF, the state vector x is governed by a non-linear function f dependent 

upon the current state, a control input, and plant noise 
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1 ( , , )k k k kx f x u w+ =   (3-14) 

with the measurement z being expressed as a non-linear function of the state, as 

( , )k k kz h x v=   (3-15) 

Both noise terms kw  and kv  have the same properties as with the linear Kalman 

filter.  Since it is impossible to know the noise at any given time and both the plant and 

measurement noise are characterized as white noise, both the state and measurement 

vectors are approximated by setting the noise equal to zero 

1ˆ ˆ( , ,0)k k kx f x u+ =  ˆ( ,0)k kz h x=   (3-16) 

Linearizing about the zero mean non-linear functions in equation 3-16 will yield a 

close approximation to the actual value of the function itself – if the noise is truly zero-

mean in nature, its expected value must be zero by definition.  We linearize the system by 

taking the Jacobians of f and h with respect to the state vector kx , and the following 

matrices are obtained 

,
i

i j
j

fF
x
∂

=
∂

  (3-17) 

,
i

i j
j

hH
x
∂

=
∂

  (3-18) 

With the above matrices defined the EKF algorithm proceeds in exactly the same 

manner as the regular Kalman filter.   

a. Prediction 
The prediction for the EKF is done via the non-linear function f described 

previously.  For the predicted state and covariance the equations are 

1ˆ ˆ( , ,0)k k kx f x u−
+ =   (3-19) 

1
T

k k k k kP F P F Q−
+ = +   (3-20) 
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b. Measurement 

Once a prediction has been made a measurement kz  is taken and as 

before, a residual kz% is calculated, this time via the non-linear function h 

ˆ( ,0)k k kz z h x−= −%   (3-21) 

The Kalman gain is calculated as before in equation 3-9, with the 

exception that when using the EKF H is the Jacobian of the non-linear function h vice the 

sensitivity matrix H used in the regular Kalman filter. 

c. Correction and Initialization 
As with the regular Kalman filter, the EKF corrects the estimate and the 

covariance matrix based upon the measurement and the Kalman gain.  The equations 

used to do this are identical to the regular Kalman filter.  Also like the regular Kalman 

filter, an EKF must be initialized with a starting value – like the correction step of the 

filtering process, the EKF method for initialization is identical to that used for the regular 

Kalman filter. 

B. ATTITUDE ERROR REPRESENTATIONS  
When using Kalman filters for spacecraft attitude estimation, the state vectors 

most frequently consist of bias and attitude errors.  Prior to developing a Kalman filter for 

attitude estimation, it is appropriate to cover how the attitude error may be represented.  

The two attitude error representations relevant to the discussion here are the quaternion 

error and the Gibbs parameter error representations.  Emphasis will be placed upon the 

latter of the two. 

1. Quaternion Error 
If two reference frames are slightly offset from one another, the error quaternion 

qδ represents the rotation that will align one frame with the other.  For example, if the 

estimated attitude of a spacecraft is given by refq and the measured attitude of the 

spacecraft by a perfect sensor was q then qδ would represent the rotation from refq , the 

estimated attitude, to q , the actual attitude.  For all rotations it can be shown that 

refq q qδ= ⊗   (3-22) 
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The ease of processing the above equation makes the error quaternion a useful 

representation for spacecraft attitude error.  However, from a Kalman filtering standpoint, 

the error quaternion presents some problems.  Recall that when defining a residual, kz%  

the estimated value is subtracted from the measured value.  For illustrative purposes, 

define p as the measured error quaternion and q as the predicted error quaternion based 

upon the current state.  Subtracting to obtain the residual yields 

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

p q p q z
p q p q z

z p q
p q p q z
p q p q z

−       
       −       = − = − = =
       −
       −              

%

%
%

%

%

  (3-23) 

While this seems straightforward enough, recall that attitude quaternions reside on 

the surface of a hyper-sphere defined previously and shown again here 

2 2 2 2
1 2 3 4 1q q q q+ + + =   (2-5) 

Though p and q both satisfy the requirements of equation 2-5 their difference will 

not do so, and therefore is not an attitude quaternion.  This becomes a problem when 

using quaternions in a Kalman filtering algorithm, so converting the quaternion to 

different representations becomes necessary – as will be shown later in this chapter.  

2. Gibbs Error 
Although the Gibbs parameter is closely related to the quaternion – as one can 

easily see from its definition in chapter two – it does not have the normalization 

constraint.  The Gibbs parameter for a particular quaternion resides in a plane tangent to 

the surface of the hyper-sphere on which quaternions reside.  A direct mapping between 

the Gibbs parameter plane and the quaternion hyper-sphere exists and is given by 

1
2( ) (4 )

2
g

g g

a
q a aδ

−  
= +  

 
  (3-24) 

It can further be shown that the direction cosine matrix associated with a 

particular ( )q aδ  may be approximated by 

2
3 3 3 3

1( ( )) [ ] ( )
2

TA q a I a a I aaδ × ×≈ − × − −   (3-25) 
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This direct relationship between the Gibbs parameter and the quaternion will be 

used in the next section to formulate a Kalman filter for spacecraft attitude estimation 

[Markley]. 

C. FORMULATION OF A GIBBS PARAMETER BASED KALMAN FILTER 
With the Kalman filter and attitude error representation introduced, the 

formulation of the Kalman filter may be developed.  The Kalman filter developed in this 

section estimates the spacecraft attitude error and the gyroscopic bias.  It uses a six 

element state vector of the form 

( )
( )

a t
x

b t
 

=  
 

  (3-26) 

where a(t) represents the attitude error in Gibbs parameters and b(t) is the 

gyroscopic bias error.   

1. Filter Overview 
The Kalman filter developed here is based on one developed by F. Landis 

Markley [Markley].  It treats the actual attitude as the quaternion product of the estimated 

quaternion error and the previous estimate, as shown here 

( ) ( ( )) refq t q a t qδ= ⊗   (3-27) 

where refq is the attitude estimate from the previous time step and ( ( ))q a tδ  

represents the rotation from the last time step to the attitude at the current time step. 

The steps for the filter are the same as for any other – prediction, measurement 

update, and correction.  What is unique about this filter is that the propagation of the state 

vector 
( )
( )

a t
x

b t
 

=  
 

 is relatively trivial in nature, as Markley himself states.  Prior to 

developing the filter itself, it is of interest to show why this is the case. 

In the prediction step of this filter, the attitude quaternion from the previous time 

step refq− is considered the optimal estimate for the attitude of the spacecraft, i.e. the 

attitude error estimate ˆ ( )a t−  at the beginning of every time step is zero by definition.  

Once a measurement is taken,  refq−  is no longer the optimal estimate for the spacecraft 
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attitude.  During the correction step, the corrected error estimate ˆ ( )a t+ is used to 

propagate the old estimate, refq− so that it becomes the new optimal estimate for the 

spacecraft attitude via 

ˆ( ( ))ref refq q a t qδ+ + −= ⊗   (3-28) 

Once the new optimal estimate has been generated, ˆ( )a t is immediately reset to 

zero.  When the next step in the recursion begins, the new refq−  then becomes the optimal 

estimate 

ˆ( ( )) (0)ref ref ref refq q a t q q q qδ δ− − − − −= ⊗ = ⊗ =   (3-29) 

Because the filter is designed in this manner, the actual propagation of the state 

vector is trivial because its first three elements are always reset to zero.  The value of 

refq− immediately after the correction step of the filtering process is the actual attitude 

estimate – the state vector merely tracks the error. 

2. System Dynamics – Developing the State Transition Matrix 
The first step in formulating any Kalman filter is mathematically modeling how 

the system should behave and subsequently constructing a state transition matrix based 

upon this mathematical model.  For a satellite, we have its current state quaternion and its 

angular rateω .  From equation 2-12, it is known that the time derivative of the quaternion 

is based upon the angular rate of the body it is describing.   

Placing this in terms of the filter formulation 

1
02
ref

ref refq q
ω 

= ⊗ 
 

r

&   (3-30) 

where refωr is the angular rate of the satellite at the reference attitude, refq .   

The filter itself is not estimating the quaternion components of the attitude – it 

estimates the error in terms of Gibbs parameters.  The equation for the propagation of the 

Gibbs parameter error is given by 

3 3
1 1( )( ) ( ) ( , )
4 2

T
g g g ref ref ga I a a a f a tω ω ω ω×= + − − + × ≡&   (3-31) 



as shown by Markley [Markley].   

We now propagate the estimate from time nT to time nT T+ .  Therefore  

( ) constantrefq q nT= =  (3-32) 

and 0refω = since refq is constant.  Therefore, from equation 3-27 we obtain 

( ) ( ( )) ( )q nT T q a nT T q nTδ+ = + ⊗   (3-33) 

 Propagating in a discrete manner, ( )ga nT T+  may be written as 

( ) ( )g g ga nT T a nT a T+ = +   (3-34) 

When this approach is taken, equation 3-31 may be rewritten as 

3 3
1 1( )
4 2

T
g g g ga I a a aω ω×= + − ×   (3-35) 

Linearizing about ga  yields the following equation 

1
2g ga aω ω= − ×   (3-36) 

Recalling from equation 2-16 that the angular velocity is actually a function of the 

measured velocity and the gyroscopic bias and substituting that into equation 3-36 

(assuming a zero noise component for the time being) gives 

1 ( )
2
1    
2

g meas m g

meas m g

a b b a

b a

ω ω

ω

= − − − ×

− − Ω
  (3-37) 

Introducing the term mΩ  which is defined as the skew of the measured angular 

velocity  

[ ]
0

0

0

z y

z x

y x

meas meas

m meas meas meas

meas meas

ω ω

ω ω ω

ω ω

 −
 

Ω = × = − 
 
−  

  (3-38) 
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We propagate the attitude from time nT to time nT+T equation 3-34 may be 

rewritten as 

3 3

1( ) ( ) ( ( ) ( ) ( ) ( ))
2

1                 ( ( ) ) ( ) ( ) ( )
2

g meas m

m meas

a nT T a nT nT b nT nT a nT T

I nT T a nT nT T b nT T

ω

ω×

+ = + − − Ω

= − Ω + −
  (3-39) 

Assuming a constant bias over short periods of time T, the state equation 3-39 

may be used to formulate the state transition matrix for the Kalman filter 

3 3 3 3

3 3 3 3

1
2 m

d

I T I T
A

I

× ×

× ×

 − Ω − =
 

∅  

  (3-40) 

which will propagate the state as 

( ) ( ) ( ) ( )dx nT T A x nT u nT w nT+ = + +   (3-41) 

This is in the standard state space form so we are able to apply standard Kalman 

filtering algorithms with the control input modeled as 

u Tω=   (3-42) 

3. System Sensors - Developing the Measurement Sensitivity Matrix 

With the state transition matrix developed from the system dynamics, it becomes 

necessary to determine how the filter will take an external measurement and incorporate 

it into the filtering algorithm via the measurement sensitivity matrix.  The term which 

drives the ‘correction’ equation is the error between the actual measurement and the 

predicted measurement.  In particular in our problem we have the actual orientation iv  

from the star trackers library in the inertial coordinate frame.  At the same time, given an 

estimate of the spacecraft orientation q̂ and the observed star bv  from the star tracker we 

can compute and estimate  

ˆ ˆ( )i bv A q v=   (3-43) 

In particular let  

ˆ ( ) ( )q q a q nTδ += ⊗   (3-44) 
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so the error ˆi iv v− can be written as 

ˆ ˆ( ( )) ( ( ))i i i bv v v A q a A q nT vδ +− = −   (3-45) 

Substituting equation 3-35 into the above equation produces a relationship 

between the Gibbs error a, refq , bvr  and ivr  

2
3 3 3 3

1[ [ ] ( )] ( )
2

b T i
refv I a a I aa A q v× ×= − × − −

r r   (3-46) 

In the above equation refq  is the estimate from the previous time step.  

Conducting a first order expansion with respect to the Gibbs error about bv
r

yields the 

following equation 

( ) ( ) [ ] ( )
b

b b b b
ab

v

hh v h v a v h v H a
v

∂
= + × = +

∂ r

r r rr
r   (3-47) 

From this, aH  is shown to be 

[ ]
b

b
a b

v

hH v
v

∂
≡ ×
∂ r

r
r   (3-48) 

With the above relations developed, the measurement sensitivity matrix can be 

formed by relating them to the state vector x 

3 3[  ]aH H ×= ∅   (3-49) 

4. The Filter Equations 
With the state transition and measurement sensitivity equations constructed, it is 

now possible to summarize and implement the Kalman filter.  In this version of the filter, 

the prediction and correction steps are combined for expediency. 

The Kalman filter is built on the following state space model, developed above 

3 3

1 3
3 3 3 3

3 3

1
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b
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uI
x n x n w Ax Bu w
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×
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×

 − Ω −   + = + + = + +    ∅ ∅  
 ∂

= × ∅ + = + ∂ r

r
r

  (3-50) 
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where ( )
a

x n
b
 

=  
 

and ( ) measu n Tω= . 

The following equations are used to estimate the state and the covariance 

3 3 3 3
1 3 3

3 3 3 3

1
ˆ ˆ ˆ( [[ ] ] )2

      
ˆ ˆ      ( )

m b
k k k k

d k k k

I T I T
x x K z v x u

I

A x K z Hx u

× ×
+ ×

× ×

 − Ω − = + − × ∅ +
 

∅  

= + − +

r

  (3-51) 

1 ( )T T T
k d k d k k kP A P A Q K HP H R K+ = + − +   (3-52)   

Note that the above two equations differ slightly from the Kalman filtering 

equations derived earlier.  For implementation purposes, the prediction and correction 

steps were combined.  It is also important to note here that the measurement kz  is the 

measured error, which is given by 

b b
kz v v= −

r r   (3-53) 

The Kalman gain K used in equation 3-60 is calculated by 

1( )T T
k d k kK A P H HP H R −= +   (3-54) 

A diagram of the filtering process is shown in Figure 4.  The reference quaternion 

which is updated after the filter estimates the attitude error gives the optimal estimate of 

the attitude of the spacecraft after it is updated with the information from the filter.  Once 

the reference quaternion becomes the optimal estimate, the attitude error estimate is reset 

to zero. 
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Figure 4.   Gibbs Parameter Kalman Filter Flow Diagram 

 

5. Testing the Filter 

Once developed, the filter was implemented in MATLAB and tested using both 

‘clean’ and corrupted quaternion measurements taken from a simulated satellite that 

drives itself to nadir pointing after an initial offset.  The gyroscopes in this simulation had 

no bias.  Clean quaternions and gyroscope readings were used on this initial run to see if 

the Kalman filter would function correctly.  The results are shown in figures five and six.  

Though some quaternion error is present, it is on the order of 610−  and is attributed to 

numerical error only.  The estimated bias is of the same order and is also attributed to 

numerical errors and the fact that a non-zero value for the bias was used to initialize the 

filter.  Because of the low level of error, it was concluded that the filter functions 

correctly. 
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Figure 5.   Quaternion Errors For Gibbs Parameter Kalman Filter With Zero Bias and No 

Measurement Noise 
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Figure 6.   Bias Estimated By Gibbs Parameter Kalman Filter with Zero Bias and No 

Measurement Noise 
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IV. STAR GAP ERROR MITIGATION 

As a satellite travels in its orbit about the Earth, there will be times when none of 

its star trackers are able to feed an attitude quaternion into the attitude control system.  

There are several possible reasons for these star gaps, including solar and lunar entry into 

the field of view (FOV) of the star tracker, processing time for the tracker to find and 

lock on a new star(s) once the previous one(s) exit the FOV, or due to a reorientation 

maneuver by the satellite – among others.  These gaps have marked effects upon attitude 

estimation algorithms.  In this section the effects of star gaps are examined – both for the 

Gibbs parameter based Kalman filter developed in Chapter Three and an Euler angle 

based Kalman filter developed by Palermo using the same data [Palermo].  Methods to 

mitigate the effects of these star gaps are presented along with simulated results of their 

implementation. 

A. EFFECTS OF STAR GAPS 
When a star gap occurs, the effect it has on the attitude estimation algorithm is 

highly dependent upon the formation of that algorithm.  Regardless of the type of 

algorithm in use, a longer star gap equates to a larger error as will be shown in the results 

later in this section.    

1. Euler Angle Based Kalman Filter 
Prior to examining how star gaps affect the Euler angle based Kalman filter it is 

useful to briefly examine its formulation.  For a full derivation of the equations, the 

reader is referred to [Palermo].  When a star gap occurs in the Euler angle based Kalman 

filter, the attitude estimate diverges for all four elements of the quaternion.  Upon 

reacquisition of a star, there is a brief spike in the attitude error then the measurement 

updates drive the error back down – eventually.  The results of a 200 second star gap on 

an attitude estimator based upon Euler angles are shown in the following figure.  The 

estimator is tracking noisy measurements for both attitude and angular rate. 
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Figure 7.   Euler Angle Based Kalman Filter with 200 Second Star Gap 

 

2. Gibbs Parameter Based Kalman Filter 
The Gibbs Parameter based Kalman Filter behaves in a very different manner.  

When a star gap occurs, the estimator is able to continue the track with excellent accuracy 

because it is still receiving angular rate data.  The measured angular rate data allows the 

estimator to propagate the reference quaternion refq  with little loss of accuracy due to the 

star gap.  The graph was made using the exact same data for a 200 second star gap as was 

used for the Euler angle based Kalman filter.  Figure 8 shows the quaternion errors for 

the same track. 
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Figure 8.   Estimated Quaternion Elements vs. Actual for Gibbs Parameter Based Kalman 

Filter (Estimate Shown in Blue) with 200 Second Star Gap 
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Figure 9.   Quaternion Error for Gibbs Parameter Based Kalman Filter with 200 Second Star 

Gap 
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B. ADAPTIVE COVARIANCE 

One technique for mitigating the effects of a star gap is adapting the different 

covariance matrices intrinsic to the Kalman filtering process.  The three matrices dealing 

with covariance are the filter covariance matrix P, the plant covariance matrix Q, and the 

measurement covariance matrix R.  The P matrix is predicted and corrected based upon 

measured values and the Kalman gain – adapting it based upon situational parameters 

would significantly change the way in which the filter propagates the estimate.  The plant 

and measurement covariance matrices, however, remain constant throughout the filtering 

process.  The performance of any Kalman filter may be modified by changing their value.  

By doing so adaptively based upon external conditions, it is possible to mitigate some of 

the attitude error caused by intermittent star gaps.  Adaptation of the plant and 

measurement covariance are examined individually and then examined in conjunction 

with one another. 

C. THE PLANT COVARIANCE MATRIX 

The plant covariance Q may be thought of as a measure of how well the model 

emulates the actual dynamics of the quantities being estimated.  The more precise the 

model, the lower the values contained in the Q matrix.  A star gap might be 

conceptualized as a system modeled in an extremely poor manner, i.e. a system with an 

extremely large plant noise.  Using this conceptualization, a trigger was developed that 

increased the plant covariance when a star gap occurred.  This covariance trigger was 

implemented on both the Euler and Gibbs parameter based Kalman Filters.   

1. Adapting Plant Noise for the Euler Angle Based Kalman Filter 

The Euler angle based Kalman Filter used for testing the adaptive covariance 

concept was developed by Palermo using SIMULINK [Palermo].  This format was 

maintained, but modified to adapt the covariance matrices.  The following figure shows 

the trigger that was developed for this purpose.  The figure shown is the measurement 

covariance trigger – the plant noise covariance trigger is identical.  An initial matrix 

serves as the covariance trigger until a certain point – user determined – at which it is 

increased by a user determined factor.  After a certain time period has elapsed, the 

covariance matrix is reset to its initial value.  A digital clock was used to do this, as can 

be seen in the diagram.   
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Figure 10.   Measurement Covariance Trigger 

 

Once the covariance trigger was implemented, it was tested using several different 

gains for the 200 second star gap under consideration.  Note that the trigger was timed to 

increase the covariance just before the star gap and decrease it immediately just after the 

star gap – assuming that the measurements preceding the star gap were stored in memory 

and recycled through with the new value of Q once the star gap was detected.  Both the 

magnitude and the directions of the rotations varied for each gain used.  The gains for the 

plant noise covariance matrix were increased logarithmically for the duration of the star 

gap.  The following figures shows the mean quaternion errors plotted against the gains 

applied to the plant noise matrix Q for the duration of the star gap.   
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Figure 11.   Mean Quaternion Error for Plant Noise Injection During Star Gaps 

 
2. Adapting Plant Noise for the Gibbs Parameter Based Kalman Filter 
The Kalman filter based on Gibbs Parameters was built in MATLAB without 

using SIMULINK, making any adaptation of the Q matrix easy to accomplish.  Unlike 

the Euler angle based Kalman filter, adapting the plant noise with the Gibbs Parameter 

based Kalman filter produced no noticeable effect.  

D. THE MEASUREMENT COVARIANCE MATRIX 

The measurement covariance matrix R provides the filter with the known 

accuracies of the sensors being used to take the measurements z.  Conceptually, it follows 

that when a sensor is producing no measurement its function should come into question.  

This was done for both types of Kalman filters discussed in this paper. 

1. Perturbation of Measurement Noise Covariance Matrix for an Euler 
Angle Based Kalman Filter 

Adapting the measurement covariance matrix accordingly using the trigger shown 

in figure eight produced the following results when applied to the Euler angle based 

Kalman filter.   
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Figure 12.   Mean Quaternion Error for Measurement Matrix Adaptation During Star Gap 

 

2. Perturbation of Measurement Noise Covariance Matrix for a Gibbs 
Parameter Based Kalman Filter 

As with the plant noise injection, measurement noise injection for the Gibbs 

parameter based Kalman filter produced no difference with regards to estimation error 

encountered during a star gap.   

E. SIMULTANEOUS ADAPTATION OF COVARIANCE MATRICES 

If adjusting the sensitivity of the filter to plant and measurement noise 

individually affects the average quaternion error for a Kalman filter, it follows that 

adapting both simultaneously would do so as well.  This was accomplished via use of two 

triggers operating in parallel, as shown previously in figure eight.  The results are shown 

in the following figure – a significant improvement over adapting either matrix 

individually.   
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Figure 13.   Average Quaternion Error with Simultaneous Plant and Measurement Covariance 

Matrix Adaptation 

Adaptation of the plant noise and measurement noise matrices is an option for 

mitigating attitude estimation error in some cases, as has been shown in the preceding 

sections.  While it does not eliminate the error induced due to star gaps, it does have the 

potential to reduce the amount of error encountered. 
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V. DYNAMIC GYROSCOPE AND RATE GYRO UPSETS 

Mechanical rate gyroscopes have historically been a weak point in satellite 

design.  Their high failure rate coupled with their noisy output and importance in attitude 

estimation makes them a liability from a reliability standpoint.  Improved gyroscopes 

have been developed – such as the laser gyroscope – but many systems currently in orbit 

are still relying on mechanical gyroscopes which are both noisy and prone to failure.  

This chapter introduces the dynamic gyroscope – a software alternative to the rate 

gyroscope, shows how rate gyroscope upsets can affect attitude estimation algorithms, 

and then integrates the dynamic gyroscope with attitude estimation algorithms to mitigate 

the effects of rate gyroscope upsets. 

A. THE RATE GYROSCOPE UPSET 
The rate gyroscope upset is a phenomenon that has been occurring on certain 

satellites in orbit.  At certain random points in time the rate gyroscope will send a 

measurement to the attitude control system that is 100 to 1000 times the actual reading.  

This wreaks havoc on the control system, as can be seen in the following two figures.  

Both figures were produced with the same data from a simulated satellite – with a 

simulated rate gyroscope upset.  The simulated rate gyroscope upset was of two seconds 

duration with a measurement 1000 times the correct reading being sent to the attitude 

estimation system.  As can be seen by looking at the figures, the Gibbs Parameter based 

Kalman Filter developed earlier performs extremely well as compared to the Euler angle 

based filter.  After a brief jump in estimator error, the attitude error for the Gibbs 

Parameter Kalman filter returns to the order of 410− while the Euler Angle Kalman filter is 

unable to recover any semblance of accuracy after an upset occurs.   
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Figure 14.   Quaternion Error with 2 second Rate Gyroscope Upset – Euler Angle Based 

Kalman Filter 
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Figure 15.   Quaternion Error with 2 second Rate Gyroscope Upset – Gibbs Parameter Based 

Kalman Filter 
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Rate gyroscope upsets of longer and longer lengths were tested on the Gibbs 

Parameter Kalman filter, as shown in figure 16 and up to a certain point the attitude 

estimator was able to recover its pre-upset estimation accuracy.  After a certain time 

period the estimator does lose its ability to recover from an upset, as shown in figure 17 

when the rate gyroscope upset was 150 seconds in length.  However, its superiority over 

the Euler Angle Kalman filter remains apparent. 
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Figure 16.   Gibbs Parameter Based Kalman Filter with 95 second Rate Gyroscope Upset 
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Figure 17.   Gibbs Parameter Based Kalman Filter with a 150 Second Rate Gyroscope Upset  

 

A bit of analysis revealed that the covariance matrix for the Kalman Filter was 

positive semi-definite for all in which it was able to recover from the rate gyroscope 

upset.  If the covariance matrix became non-positive semi-definite during the rate 

gyroscope upset, the filter would not recover. 

 
B. THE DYNAMIC GYROSCOPE 

It is possible to mathematically model and predict all of the external torques on a 

satellite with some degree of accuracy – some more than others.  Recall from basic 

physics that the torque N of a satellite during a time period may be expressed as  

1k

k

t

satellite t
N Hdt+= ∫

r&   (5-1) 

Equation 5-1 may further be broken down because the torques on a satellite may 

be expressed as the sum of its external torques – which may be mathematically modeled 

– and its internal torques from any momentum exchange devices.  Equation 5-1 may 

therefore be written as 
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It follows that  
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r r r r r&   (5-3) 

Assuming that any change in the moment of inertia between 1kt + and kt will be 

negligible and recalling that  

k kH Iω=
r r   (5-4) 

It follows that 
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Inserting equation 5-3 into equation 5-5 gives a way to predict the angular 

momentum for 1kt +  given only known or mathematically modeled data 

1
1 ( )k k ext MEDI N Nω ω −
+ = + +

r rr r   (5-6) 

Using equation 5-6 or some variant thereof, the angular momentum of a satellite 

may be obtained analytically.  An algorithm that calculates the angular rate in this 

manner is referred to as a dynamic or a pseudo-gyroscope.  Such a gyroscope was 

developed by Aerospace Corporation and a variant of this was implemented by Palermo 

[Palermo].  The following figure shows a comparison of a simulated real gyroscope and 

the Palermo dynamic gyroscope.  The dynamic gyroscope produces a reading very close 

to that produced by the real gyroscope.  While rate error is not absent, the amount of error 

– shown in figure 19 – is such that the resulting attitude error will be manageable.  
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Figure 18.   Comparison of Real and Dynamic Gyroscope Performance 
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Figure 19.   Difference Between Real and Dynamic Gyroscope Readings 
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Though convenient, dynamic gyroscopes are not free of problems.  Any 

inaccuracy in knowledge of the moment of inertia of the spacecraft will result in angular 

rate errors, as can be seen from equation 5-6.  Any expenditure of fuel, movement of fuel 

due to any slew maneuver or satellite motion, or any movement of the solar arrays – 

among other things – will change the moment of inertia of a satellite, thereby causing 

some error.  System identification algorithms can be used to help mitigate this problem, 

but such algorithms are not perfect – error will always remain.   

C. INTEGRATING THE DYNAMIC GYROSCOPE WITH AN ATTITUDE 
ESTIMATOR 
By using a dynamic gyroscope in conjunction with a real mechanical gyroscope it 

is possible to mitigate the effect of a rate-gyroscope upset.  As seen in the above figures, 

the dynamic gyroscope is able to produce data quite close to that of a real gyroscope.  

Given the fact that the Gibbs Parameter based Kalman filter is extremely robust with 

regards to recovering from rate gyroscope upsets and the fact that any mechanism for 

switching from regular gyroscope readings to measurements from the dynamic gyroscope 

will be imperfect, the Gibbs Parameter based Kalman filter is an ideal estimator with 

which to integrate the dynamic gyroscope.  The following figure shows the quaternion 

error for a Gibbs parameter based Kalman filter with a 95 second rate gyroscope upset of 

1000 times the actual reading.  The dynamic gyroscope in this scenario took over 

immediately so no upset readings entered the estimator.   
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Figure 20.   Comparison of Estimator Performance with and without Dynamic Gyroscope 

input during a 95 second Rate Gyroscope Upset 
 

As can be seen, when a dynamic gyroscope is in use and no data from the real 

gyroscope during its upset period reaches the estimator, the amount of error encountered 

is only slightly increased.  As mentioned earlier, this would be an ideal scenario.  It 

would be impossible to design a perfect algorithm where the dynamic gyroscope data 

would replace the real gyroscope measurements immediately.  Some upset data would 

always have a chance of getting into the estimator.  The robustness of the Gibbs 

parameter based Kalman filter to short rate gyroscope upsets was shown previously.  The 

following figure shows a scenario in which the dynamic gyroscope takes over two 

measurements after the commencement of the rate gyroscope upset.  Notice the minor 

perturbations in the error - the estimator rapidly converges back to an estimate with error 

on the order of 410− . 
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Figure 21.   Quaternion Error with Dynamic Gyroscope Takeover Occurring Two Seconds 

after Rate Gyroscope Upset Commencement 
 

By creating a switching algorithm with a high reliability, rate gyroscope upsets 

may be experienced by an attitude estimator using a Gibbs parameter based Kalman filter 

with little loss of estimator accuracy, as can be seen in the figures above. 
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VI. CONCLUSIONS 

The Gibbs parameter formulation of the Kalman filter provides an accurate 

estimate of spacecraft attitude.  It is far more robust an estimator when confronted with 

either a star gap or rate gyroscope upset than the Euler angle estimator. 

A. SUMMARY 
A Kalman filter based upon the Gibbs parameterization of spacecraft attitude is 

developed and analyzed.  A comparison between this formulation and a Kalman filter 

developed by Palermo is conducted under different operating scenarios.  The dynamic 

gyroscope is shown to be a viable substitute for mechanical gyroscopes during periods of 

rate gyroscope upsets.  The Gibbs parameter based Kalman filter used in conjunction 

with the dynamic gyroscope is shown to be an excellent method to mitigate the effects of 

rate gyroscope upsets and produces far superior results than the Euler angle formulation 

of the Kalman filter when faced with a rate gyroscope upset. 

B. RECOMMENDATIONS 

It is strongly recommended that future work be done on attitude estimation in two 

specific areas at a minimum:  Kalman Filtering and Unscented Filtering.   

1.   Kalman Filtering 
The Kalman filter developed in this work was limited to six states for purposes of 

the research.  It is possible – and somewhat desirable in some cases – to have a much 

larger state vector estimating other factors impacting spacecraft attitude estimation such 

as scale factors of gyroscopes and star trackers, alignment errors in the sensor to body 

transformation matrices, misalignment of gyroscopes, and errors in the ECI to body 

coordinate transformations – among others.  Grey, Kolve, Herman, and Westerlund have 

developed such a filter that is used in on-orbit calibrations [Gray].  The Aerospace 

Corporation has developed a similar filter.  It is recommended that such filters and the 

modeling to support their implementation be developed and studied – implementing the 

Gibbs parameter formulation for attitude error estimation into these models. 

  2.  Unscented Filtering 
As mentioned in the description of the EKF, it is based upon a linearization of 

non-linear functions.  This linearization is the fundamental flaw of the EKF.  Julier et al 



52

have developed an alternative to the EKF based on the premise that it should be easier to 

approximate a Gaussian distribution than to approximate an arbitrary non-linear function.  

Markley and Crassidis have adapted this filtering method to spacecraft attitude estimation 

and it is recommended that research into this method as an alternative to Kalman filtering 

be conducted [Crassidis]. 
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